Указатель чередования фаз своими руками

Содержание

Что такое фазоуказатель и как им пользоваться? Как устроен прибор и принцип работы устройства (135 фото и видео)

Указатель чередования фаз своими руками

Современный мир не привык стоять на месте, он постоянно развивается и изобретает всё новые устройства. Такая тенденция развития сохраняется во всех направлениях.

Когда мы вызываем из ЖЭКА электрика, то у него непременно в коробке с рабочими инструментами будет фазоуказатель. Без него трудно представить работу с электрическими сетями и приборами.

Сегодня мы хотим детально рассказать вам о назначении фазоуказателя.

Прямое назначение фазоуказателя

Очень часто электрикам приходится работать с трёхфазными сетями. Нужно отметить, что это очень сложная и опасная работа, на которой в любой момент может ударить электрическим током.

Подключение происходит в несколько этапов:

  • Измерение напряжения.
  • Замена ротора.
  • Подключение к асинхронному двигателю.

К примеру, если взять простейшую работу вентилятора, то всегда необходимо знать направление вращения. Данные знания позволят правильно обеспечить выполнение технологического цикла.

Из этого следует, что решать проблему проводки вентилятора стоит с помощью грамотного специалиста, а не своими усилиями.

Если не правильно синхронизировать двигатель любого устройства, то дальнейшая работа по починке такого устройства будет бессмысленной.

Инструкция по эксплуатации фазоуказателя

Ещё 15 лет назад в распоряжении электриков было всего несколько видов фазоуказателей, но сейчас их количество значительно больше.

Если откатиться назад, и вспомнить Советский Союз, то там самым ходовым фазоуказателем был проверенный работой и временем И517М.

Данный прибор небольшого размера и может поместить в ладони человека. Его главным отличием от других приборов является чувствительность при чередовании фаз.

Чтобы подробнее узнать обо всех его особенностях, вам нужно прочитать инструкцию по использованию. Но если рассказать вкратце, то инструкция по эксплуатации выглядит следующим образом:

При работе с этим аппаратом всегда нужно его осматривать. Данная мера предосторожности является необходимой.

Если будет нарушена целостность прибора, то со 100% вероятностью вас очень сильно ударит током, что впоследствии влечёт за собой большие проблемы со здоровьем.

Во время работы с фазоуказателем применяют специальный вывод с обмоткой.

Далее происходит вращение индикаторного диска, который в свою очередь и указывает на правильный порядок чередования фаз.

Регулировка коэффициента мощности

Большая часть работы прибора выпадает на сближение с cos единицами. Если вы хорошо учились в школе и не прогуливали уроки Физики, то вы наверняка знаете об этих единицах.

При уменьшении показателей данных единиц будет соответственно происходить снижение мощности, которая нужна для нагревания электрооборудования. Самым безопасным коэффициентом мощность является 0,90 единиц в индуктивном виде.

Электродинамические фазометры

Часто такие приборы ещё называют электромагнитными. Их принцип работы основан на простой цепочке логометрических приспособлений, которые определяют малейшие сдвиги фаз.

Электромагнитные фазометры представляют собой не сложную конструкцию, состоящую из двух алюминиевых рамок, между которыми проходит электропровод большой чувствительности.

Стоит обратить внимание на то, что угол между рамками равен 65 градусам.

При работе с фазометром электрик обращает внимание на сдвиги в работе прибора. Именно они и указывают на направление фазного сдвига. Фото фазоуказателя на электромагните можно найти в свободном доступе в интернете.

Трёхфазная система ЭДС

Очень часто на различных форумах люди интересуются системой ЭДС. Данная система представляет собой совокупность трёхфазных сетей, которые зависят друг от друга. Система применяется в двигателях автомобилей, а также множестве самых примитивных электроприборах. Более подробно о ней можно узнать в соответствующей литературе и рисунках.

Заключение

В нашей статье мы попытались максимально объективно рассказать о том, как устроен фазометр, какие он имеет особенности, и зачем его используют.

Очень надеемся, что данная информация об этом устройстве была для вас полезной. Благодарим за внимание.

Фото фазоуказателей

Вам понравилась статья? Поделитесь 😉  

Источник: https://electrikexpert.ru/chto-takoe-fazoukazatel-kak-im-polzovatsya/

Простой сетевой индикатор последовательности фаз. | Мастер Винтик. Всё своими руками!

Указатель чередования фаз своими руками

Индикатор, определяющий последовательность фаз в трехфазной цепи, можно по­строить на нескольких пассивных компонентах.

В трехфазной сети источник питания развивает три одинаковых по амплитуде и час­тоте напряжения, которые сдвинуты по фазе друг относительно друга на 120° последо­вательно по проводам (фазам). Для установления правильной последовательности фаз существуют два варианта. В первом варианте на второй фазе имеется задержка на 120° относительно первой, а в третьей — еще на 120° относительно второй.

Во втором вари­анте последовательность фаз обратная: на второй фазе существует опережение на 120° относительно первой, а на третьей фазе — опережение на 120° относительно второй Кроме этих двух нормальных последовательностей фаз существует еще ряд случайных последовательностей, которые являются просто перепутыванием фаз.

Поэтому необ­ходим прибор, который устанавливает порядок следования фаз не только для установ­ки их следования по порядку, но и для того, чтобы трехфазный мотор вращался в нуж­ном направлении.

На рис.1 показана основная схема, которая может показывать порядок следования фаз. Соблюдаются следующие условия. Напряжения на R1 и С2 равны, т.е. их ампли­туды и фазы равны, но только в том случае, когда Vs2 отстает на 120° от Vs1 что пока­зывает нормальный порядок следования фаз. В этом случае напряжение между точка­ми А и В равно нулю. Наоборот, напряжения на С2 и R3 равны только в случае, когда   Vs2 опережает Vs1  на 120°, что означает обратную последовательность фаз.

Если обратиться к фазовой диаграмме (рис.2), когда напряжения на R1 и С2 равны, то Vc1 = Vr2 , Vc1 +  Vr1 = Vs1  и Vc2 + Vr2= Vs2 .

(подробнее в источнике)
Чтобы обнаружить обратную последовательность фаз, нужно, чтобы R1 =R3 и С1=С3, т.е. компоненты в третьей ветви схемы рис.1 должны быть идентичны компонентам в пер­вой ветви. На рис.3 показана схема, предложенная журналом EDN, для обнаружения фазовой последовательности. Требования к земляной шине уменьшены путем добавле­ния резисторов R4 и R5, включенных в параллель к первой и третьей ветвям.

Чтобы между точкой С и земляной шиной не было тока, сумма токов во всех трех вет­вях должна равняться нулю. Если отсоединить точку С от земляной шины, то потенциал по отношению к земле будет равняться нулю. Если соотношения     Xc1 к R1 , Хc2 к R2 и Хcз

к R3 соблюдаются, то сохраняется равенство напряжений в точках А, В и С. Умножение значений компонентов ветвей на постоянную величину ничего не меняет. Диаграмма фаз токов цепи рис.3 показана на рис.4.

Светодиоды LED1 и LED2 показывают последовательность фаз. При правильной по­следовательности будет светиться только LED2, напряжение между точками А и В рав­но нулю. В случае обратной последова­тельности фаз будет светиться LED1. Если в одной из фаз нет напряжения, светятся оба светодиода. Диоды, включенные параллель­но светодиодам, защищают их от пробоя при обратном напряжении, а резисторы R6 и R7 ограничивают прямой ток через свето­диоды. Светодиоды можно заменить други­ми элементами индикации, но обязательно с высоким импедансом.

В схеме рис.3 резисторы R1=R2=R3=1/(2ПfС1tg60°),  C1=СЗ, а вот С2=ЗС1. Резисторы R4 и R5 вдвое больше, чем R1=R2=RЗ. Токи через светодиодные цепи должны быть существенно меньше токов в ветвях.

Источник:  РАДИОСХЕМА №1, 2007г.

  • Цифровая шкала — частотомер
  • При работе на любительской радиостанции перед радиолюбителем часто встает необходимость точно знать частоту, на которую настроен его трансивер или приемник для того, чтобы не уйти за пределы диапазона или для точной настройки на заранее оговоренную частоту. Механические шкалы не дают такой возможности поэтому приходится конструировать электронные шкалы. Подробнее…

  • Прибор для проверки оксидных конденсаторов на ЭПС (ESR)
  • Проблема быстрого контроля исправности оксидных конден­саторов решается, если использовать пробник, позволяющий примерно оценить емкость и эквивалентное последовательное сопротивление конденсатора без его демонтажа из ремонтируе­мой аппаратуры. Предлагается еще один вариант простого при­бора, аналогичного уже описанному в «Радио», но с использова­нием стрелочного индикатора. Подробнее…

  • Простое цифровое управление синтезатором радиостанций
  • Описание схемы управления

    Во многих радиостанциях (Маяк, Эстакада и тп.) синтезаторы управляются двоичным кодом. Для управления такими синтезаторами предлагаю собрать не сложную схему на «простой» логике. Переключаются каналы вверх / вниз двумя кнопками. Имеется возможность включить «автоматическое сканирование частот»,Подробнее…

Популярность: 4 655 просм.

Источник: http://www.MasterVintik.ru/prostoj-setevoj-indikator-posledovatelnosti-faz/

Указатель правильности чередования фаз TKF-12 от Sonel

Указатель чередования фаз своими руками

Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».

Сегодня наша электролаборатория приобрела в свой «парк» приборов указатель чередования фаз TKF-12 от компании Sonel. С помощью него можно определять наличие напряжения в трехфазных сетях от 100 (В) до 760 (В) и последовательность чередования (следования) фаз.

Стоимость TKF-12 на дату выхода обзора составляет 5300 рублей. Напомню, что до сегодняшнего дня мы пользовались фазоуказателем ФУ-2 (вот ссылка на статью о нем).

Чередование фаз необходимо проверять для правильного подключения трехфазных электродвигателей. При прямом подключении фаз они будут вращаться в одну сторону, а при обратном — в другую. Немаловажно учитывать чередование фаз и при подключении счетчиков электрической энергии.

Итак, сначала я расскажу Вам о технических характеристиках TKF-12, а затем покажу как им пользоваться.

Технические данные указателя TKF-12:

  • пределы измеряемых линейных напряжений 100-760 (В) переменного тока
  • частота сети 10-70 (Гц)
  • потребляемый ток по каждой фазе в момент измерения не более 3,5 (мА)
  • температура эксплуатации от -10°С до +45°С
  • гарантия 3 года

В такой упаковке я получил указатель.

В комплект поставки входит:

  • указатель TKF-12
  • 3 острых зонда (щупа) желтого, красного и черного цветов с разъемом типа «банан»
  • 1 изолированный зажим типа «крокодил» (К01) черного цвета
  • руководство по эксплуатации
  • паспорт

Прибор TKF-12 достаточно компактный и легкий. Габаритные размеры: 130х72х31 (мм), а вес составляет всего 340 (г). Вот его внешний вид.

Корпус прибора изготовлен из качественного пластика (класс защиты САТ III 600V, двойная изоляция). Дополнительно на корпус прибора одет прорезиненный чехол оранжевого цвета, который защищает его от загрязнений и влаги, а также от случайных падений с небольших высот.

К прибору подсоединены 3 провода длиной 1,2 (м) с разъемами типа «банан».

В эти разъемы вставляются острые зонды (щупы) из комплекта соответствующих цветов.

Красный провод соответствует фазе А (L1), черный — фазе В (L2), желтый — фазе С (L3). Если честно, то такая цветовая маркировка проводов мне не совсем привычна. В трехфазных цепях для фаз А, В и С я привык использовать стандартные цвета Ж, З и К (желтый, зеленый, красный). Благо, что на концах проводов имеются бирочки с маркировкой.

Провода зафиксированы в корпусе прибора и отсоединить их нет возможности.

Для указателя TKF-12 не требуется дополнительных источников питания. Его питание осуществляется непосредственно от цепи исследуемой установки. Это хорошее преимущество — не нужно постоянно следить за уровнем заряда элементов питания. Еще одно достоинство про которое я хотел бы упомянуть, это то, что для данного прибора не требуется поверка.

Как пользоваться указателем чередования фаз TKF-12

Принцип работы указателя я покажу Вам на испытательном стенде, где имеется источник трехфазного напряжения.

Линейное напряжение трехфазной сети составляет 220 (В). Предел вольтметра установлен на «260», а переключатель межфазных напряжений установлен в положение «В-С».

Определим порядок чередования фаз на стенде с помощью TKF-12.

Подключим провода А (L1), В (L2) и С (L3) к выводам трехфазного источника. Прошу заметить, что длительность подключения прибора к сети не должна превышать более 30 секунд. Если оставить на время более 30 секунд, то прибор может сильно нагреться и отключиться от встроенной в него защиты.

Для удобства подключения для фазы «В» я использовал изолированный зажим типа «крокодил», который входил в комплект. Если честно, то у меня возник вопрос, а почему в комплекте такой зажим всего один, а не три, для каждого провода. Пожалуй, задам я этот вопрос непосредственно производителю прибора.

На шкале прибора загорелись 3 красных светодиодных индикатора: А (L1), В (L2) и С (L3), что говорит о наличии линейного напряжения выше 100 (В) в трехфазной сети.

Также на приборе загорелся красный светодиод «L», который означает, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.

Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы на источнике питания.

Меняю местами две крайние фазы и снова провожу измерение.

Теперь на приборе загорелся зеленый индикатор «R». Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: АВС, ВСА или САВ.

Примечание: c помощью указателя чередования фаз TKF-12 нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося магнитного поля:

  • прямое следование фаз — АВС, ВСА или САВ
  • обратное следование фаз — СВА, АСВ или ВАС

С принципом работы TKF-12 Вы можете ознакомиться в этом видеоролике:

Источник: http://zametkielectrika.ru/ukazatel-pravilnosti-cheredovaniya-faz-tkf-12/

Фазоуказатель своими руками: как проверить фазировку

Указатель чередования фаз своими руками

Хороший, качественный измерительный инструмент под рукой — эталон быстрой работы. Конечно, также необходимо иметь с собой инструменты, с помощью которого можно производить ремонт, но определение проблемы — это уже 80 % её решений. В статье описан последовательный монтаж указателя фазы своими руками. Потребуется только точно следовать инструкциям, иметь необходимые материалы и запастись толикой терпения.

Что такое фазоуказатель

Немного теории: указатель фазы — это измерительный прибор, показывающий чередование фаз трёхфазного напряжения и тока. Следует сразу развеять надежды молодых электриков и развеять миф, что с помощью фазоуказателя можно определить где именно какая фаза находится. Аксиома: данный прибор показывает только чередование фаз.

Разновидности фазоуказателей:

  • Электромеханические приборы для определения угла фазировки. Массивные устройства, в состав которых входят асинхронные двигатели и индикаторные диски. Фазометр подобного типа также позволяет определить отсутствие одной фазы, но не указывает какой именно.
  • На неоновых лампах. Здесь уже не используются громоздкие асинхронные двигатели, так как работа устройства основана на батареях или отдельных конденсаторах. Основные индикаторы в таких приборах — неоновые лампы.
  • Электронный. Самый точный и одновременно самый дорогой прибор, принципом работы которого основан на сравнении синусоид на линии.

Существует большое количество таких приборов, выпускаемых различными производителями. Наиболее распространённые и чаще всего применяемые в работе модели: ФУ-2, ЭИ5001, VC-805, и конечно надёжный, проверенный временем И-517, который даже входил в ЗИП многих армейских дизельных электростанций. Но сейчас можно найти на рынке и вполне солидные и надёжные указатель фазы от китайских представителей.

Также существуют и более дорогие современные фазоуказатели от известных мировых производителей электронной техники, таких как Eltes или Mastech.

Современные фазоуказатели чаще сочетают в себе ещё и функцию индикатора напряжения, поэтому являются многофункциональными.

Когда действительно необходимо фазоуказатель

Определители угла опережения фаз в большом количестве занимают полки электротехнических магазинов, как отечественные, так и зарубежные модели. Но как определить тот самый угол опережения и зачем он вообще нужен, знают немногие электрики.

Хороший, качественный фазоуказатель необходим при поиске чередования фаз для того, чтобы обеспечить вращении электродвигателя в правильную сторону. Например, при включении водяного насоса в скважине, который может как транспортировать её наверх, так и бесполезно вращать лопасти крыльчатки, закреплённые на электродвигателе, и потреблять при этом лишнюю электроэнергию.

Ещё один хороший пример, которым определяется важность фазоуказателя как прибора: подключение индукционного счётчика. Если перепутать фазы, то после монтажа счётчик продолжит вращать диск даже при отключённой нагрузке. При такой работе прибора пользователя ждут дополнительные расходы, которые можно исключить, сделав качественный фазоуказатель своими руками.

Достаточно двух неправильно подключённых фаз, чтобы наблюдать такой эффект, а определение угла чередования фаз возможно только с помощью фазоуказателя. Без данного прибора правильно подключить электродвигатель невозможно, разве что методом «тыка», что не очень хорошо — можно спалить изделие.

Последовательность изготовления простого фазоуказателя

Внимание! Самостоятельное изготовление схем здесь и далее крайне опасно для жизни, так как может привести к поражению высоким напряжением, поэтому такое изготовление может быть выполнено только людьми, имеющими специальное образование и допуски!

Существует схема простого указателя фазы, с которым можно работать в трёхфазной промышленной сети, не боясь поражения электрическим током или повреждения прибора. Схема представлена ниже:

Для работы потребуются следующие элементы:

  • 3 соединительные клеммы, выполненные по типу «крокодилы».
  • 2 резистора сопротивлением 10 кОм и 18 кОм.
  • Диод типа КД105В. Допускается замена элемента на диод из серии КД209.
  • Тиристор типа Т112-25-10 (25А 1000В). Допускается замена элемента на VS-25TTS12-M3 (25А 1200В).
  • Лампа накаливания, напряжением 26 В и силой тока 0.12 А.
  • Небольшой отрезок провода сечением 1 мм² для внутреннего монтажа схемы.
  • 3 отрезка провода сечением 1.5 мм² такой длины, чтобы хватило для комфортного измерения фаз своими руками.
  • Пластиковый корпус.

Последовательность монтажа электрической цепи фазоуказателя своими руками:

  1. Выполнить соединение элементов диода, тиристора, двух резисторов и лампы накаливания с помощью пайки согласно приведённой выше схеме.
  2. Закрепить спаянные детали в пластиковом корпусе. Можно использовать эпоксидный клей, но только не на самих элементах, которые при работе могут нагреваться.
  3. Тонким сверлом просверлить в корпусе 3 отверстия и запустить в них 3 одинаковых отрезка провода сечением 1.5 мм² — это будут измерительные щупы. Закрепить провода с помощью эпоксидки — так как проводники в изоляции, то чрезмерный нагрев здесь не страшен.
  4. На концах измерительных щупов закрепить крокодилы. Для большей надёжности их можно пропаять.
  5. В верхней крышке пластикового корпуса просверлить или вырезать отверстие под патрон для сигнальной лампы. Патрон надёжно закрепить с внутренней стороны корпуса с помощью эпоксидного клея.
  6. Закрепить верхнюю крышку корпуса четырьмя небольшими саморезами.
  7. Проверка прибора на линии, в которой фазы расположены заведомо правильно.

Данный фазоуказатель имеет существенное преимущество в сравнении с дорогими промышленными моделями — простоту. Стоимость всех элементов (с учётом расходных материалов), необходимых для сборки, очень низкая и по карману не ударит. Собрать и спаять такую схему сможет любой электрик-новичок, даже впервые взявший в руки паяльник.

Принцип работы приборы очень прост: сфазированные линии включат лампу на корпусе прибора. Правильное чередование — лампа светится ярко, неправильное — очень тускло или не светится вообще. Корпус прибора можно выбрать самый простой, но только из изоляционного пластика или любого другого материала, не пропускающего электрический ток.

Более сложный фазоуказатель своими руками

Для электриков, желающих использовать более сложные приборы в трёхфазной цепи, существует ещё одна схема:

Как видно из представленной схемы, здесь потребуется большее количество элементов, да и сборка посложнее. Но при правильном монтаже, на выходе обеспечен качественный и надёжный фазоуказатель, к тому же полностью сделанный своими руками.

Необходимые для работы элементы:

  • Светодиод HB5d-448ABC-A — с зелёным светом. Допускается замена светодиодом типа АЛ307.
  • Светодиод HB5d-434FY-C — с жёлтым светом. Допускается замена светодиодом типа АЛ307.
  • 2 диода КД209А. Допускается замена элементов диодами КД209Б или КД209В.
  • 2 резистора сопротивлением 47 кОм каждый. Мощностная характеристика незначительна, но лучше брать резисторы, рассчитанные на 0.125 Вт.
  • Оптрон симисторный МОС3063. Допускается замена элемента оптроном МОС3062, МОС3082, МОС3083.
  • Небольшой отрезок провода сечением 1 мм² для внутреннего монтажа схемы.
  • 3 отрезка провода сечением 1.5 мм².
  • Небольшая макетная плата.
  • Пластиковый корпус.

Очерёдность монтажа фазоуказателя практически ничем не отличается от предыдущего прибора, изготовленного своими руками. Только увеличилось количество элементов на схеме.

Последовательность проверки фазировки данным измерительным прибором:

  1. Определить нулевой провод в линии, в которой будет проводиться поиск чередования фаз. Чаще всего это нулевая шина, но может быть и отдельная шина заземления. Можно воспользоваться индикаторной отвёрткой.
  2. Измерительный щуп «N» с помощью крокодила зацепить за нулевую шину линии.
  3. Измерительный щуп «А» с помощью крокодила зацепить за любую из фаз. Загоревшийся жёлтый светодиод покажет наличие напряжение.
  4. Острым измерительным щупом «B» коснуться фазы, идущей следом за той, на которую закреплён крокодил щупа «А». Для определения фазировки на проводе под напряжением лучше всего использовать именно острый щуп, а не крокодил.
  5. Если угол чередования фаз составляет 120 градусов, то должен загореться зелёный светодиод. Если светодиод не загорелся, то щупом «B» необходимо коснуться третьего рабочего провода.

Помимо своей простоты, данный прибор необычайно точен и позволяет за несколько минут определить фазирование в линии. Изготовив такой фазоуказатель самостоятельно, пользователь получает не только экономию средств, но и экономию личного времени при последующих измерениях чередования фаз.

Сложный фазоуказатель

Если же сборка фазоуказателя стала вызовом для начинающего электрика, то можно, используя приведённую ниже схему, смонтировать устройство, для работы которого не требуется подключение к нулевому проводнику в сети. Сразу следует уточнить, что изготовление подобного прибора будет под силу только определённому кругу специалистов, здесь требуется навык работы с паяльником и монтажными платами.

Схема достаточно тяжёлая, но на ней есть все необходимые номинальные значения элементов, следует только сделать несколько полезных в работе замечаний:

  • Микросхему К561ЛП2 допускается заменять на CD4030BE.
  • Вместо триггера К561ТМ3 используйте CD4042BE.
  • Транзисторы КТ3107А заменяются на аналогичные по своему действию модели КТ3107 или КТ361.
  • В схеме используются диоды моделей КД105В, КД105Г, КД209Б.
  • В качестве светодиодов можно использовать любые модели, главное, чтобы был соответствующий цвет свечения.

Плюсы схемы:

  • Необычайно точная сборка, которая даёт быстрый результат при определении фазировки.
  • Проверка угла между фазами занимает несколько секунд.
  • Не требуется подключение к «нулевой» шине.
  • При правильном монтаже прибор долговечен и совершенно безопасен.

К сожалению, есть и некоторые недостатки данного прибора, собранного своими руками. Во-первых, схема достаточно сложна и скорее всего правильно смонтировать её начинающему электрику будет очень трудно. Во-вторых, стоимость всех элементов может быть достаточно высокой и дешевле приобрести промышленный прибор.

Подводя итоги

Прибор для измерения угла в трёхфазной цепи — это необходимый для каждого электрика измерительный инструмент, который должен быть всегда под рукой. Самостоятельно собранное устройство сэкономит не только средства, но и личное время в будущем. Конечно, всегда остаётся вариант покупки изделия в магазине электронной техники или измерительных приборов, но намного полезнее для себя как для специалиста попробовать собрать подобное устройство самостоятельно.

по теме

Источник: https://ProFazu.ru/elektrooborudovanie/samodelki-oborud/fazoukazatel-svoimi-rukami.html

Чередование фаз в трехфахной сети: что это и как выполнить проверку?

Указатель чередования фаз своими руками

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую.  В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана  разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит  U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A  к U­B, а за ним к  U­C. Это означает, что фазы чередуются в порядке A, B, C.  Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность  в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности  A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности  C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A,    C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

по принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — фу-2 .

рисунок 3: принципиальная схема работы фу-2

как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. между обмотками находится вращающийся ротор р, который приводит в движение диск фазоуказателя д.

на практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку к, которая замыкает цепь обмоток. в зависимости от порядка чередования фаз, диск д начнет вращаться по часовой или против часовой стрелки.

на самом приборе имеется стрелка, показывающая прямое чередование. если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

с помощью мегаомметра

как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

рис. 4: прозвонка кабеля мегаомметром

посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. при этом, с одного конца кабеля фазы поочередно соединяются с землей з, как и металлическая оболочка у бронированных кабелей. с другой стороны присоединяется мегаомметр м, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. на той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

на концах одноименного провода устанавливается соответствующая маркировка. недостатком такого способа прозвонки является большой объем трудозатрат. так как каждая жила заземляется поочередно, после чего выполняется проверка. при этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

по расцветке изоляции жил

если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает  один и тот же цвет для каждой жилы на всей протяженности провода. поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

при помощи мультиметра

для этого метода используется обычный мультиметр. он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

рис. 5: фазировка мультиметром

необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз а и а1. коммутационная аппаратура при этом должна быть разомкнута.  перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

если при подключении щупов к выводам a — a1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео

Источник: https://www.asutpp.ru/cheredovanie-faz.html

Прибор для определения чередования фаз своими руками

Указатель чередования фаз своими руками

Чтобы сделать фазировку электрической линии, нужно иметь соответствующий опыт и знания Сфазировать генератор или электродвигатель поможет фазометр или по-другому фазоуказатель. Однако, его непросто найти в магазинах или же просто нет смысла покупать его для одного раза использования.

Для кабельных проводов обязательно нужно знать фазы ввода, иначе может произойти короткое замыкание. При правильности определения считать напряжение будет гораздо удобнее.

Что такое фазирование, и как определить фазы, как пользоваться мультиметром и сделать такой прибор дома – обо всех нюансах ниже.

Фазирование или фазировка – это уточнение аналогичности фаз под током каждой из 3 линий. Сфазированные обмотки согласуются, что обеспечивает правильную работу разных электрических приборов.

В настоящее время сделать это можно самостоятельно.

Проверка чередования фаз обязательно проводится при применении трехфазных электродвигателей с использованием переменного тока.

Нюансы:

  1. Фазировка влияет на направление вращения двигателя, что является очень важным условием, особенно, если сразу несколько механизмов используют двигатели одного порядка.
  2. Другим случаем, когда обязательно нужно обратить внимание на чередование фаз, является работа с помощью электросчетчика индукционного типа. При обратном порядке, нередко случается самопроизвольное вращение диска, расположенного на счётчике. Эти счетчики в настоящее время менее требовательны к фазировке, однако на индикаторе также появляются соответствующие данные.
  3. В некоторых случаях контроль расположения фаз можно выполнить без использования специальных приборов. Например, если подключение трехфазной сети питания происходит при соединении силовых кабелей. Если жилы внутри этого кабеля различны по своему цвету, то прозвонка происходит в разы быстрее. В некоторых случаях нужно просто очистить наружную изоляцию кабеля, чтобы узнать, где находится какая фаза. Жилы одинакового цвета обозначают, что фазы одинаковые.

Проверка чередования фаз выполняется с помощью специального прибора

Однако, цветовая маркировка не всегда гарантия правильного расположения фаз, ведь далеко не все производители придерживаются таких норм. Иногда на разных концах кабеля можно встретить различные цвета, поэтому идеальным и самым надежным способом определить, где какая фаза, является использование прозвонки жил.

Универсальность определителя фаз

Для этого лучше всего подходит механизм вычисления последовательности фазировки, то есть определитель. Он предназначен для обнаружения фазировки, в которой напряжение отстает от значения в фазе.

Взятая для начала отсчета точка этого отставания нужна, чтобы правильно подключить к сети, приборы, которые требуют соблюдения последовательности чередования фаз.

Одним из примеров такого прибора может быть трехфазный четырехпроводный электросчетчик.

Конструкция такого устройства отличается простотой:

  1. Основа представляет электроизоляционный материал, например, текстолит.
  2. В нём размещены 2 настенных электропатрона, внутри которых находится обычные лампы накаливания, закрытые полупрозрачными кожухами.
  3. На их основании укрепляют конденсатор и клеммник подсоединения проводов.

Нередко такие определители делают самостоятельно в домашних условиях.

При подключении такого определителя к 3-фазной сети, из-за вставленного конденсатора в каждой фазе, меняется напряжение, поэтому лампы накаливания светятся по-разному.

По интенсивности свечения ламп можно судить о принадлежности оставшихся двух проводов к оставшимся фазам.

При подключении данного элемента для вычисления чередования фазировки при обесточенной трехфазной сети, в качестве средней выбирается линия В.

По отношению к этой фазе, 1 из не подсоединенных проводов, например, А, будет опережающим. То есть, напряжение в ней будет опережать значение в фазе В. А последняя фаза С будет отстающей, в ней напряжение будет отставать от В.

Схема такого подключения выглядит следующим образом. При подаче на определитель напряжения, одна из светоисточников будет гореть ярче, а другой хуже. Линия, где диод горит ярче, является отстающей. Фаза, где лампа горит наполовину, является опережающей.

Таким образом, можно определить, правильное ли чередование фаз.

Советы: как определить фазы в трехфазной цепи

В некоторых случаях, определять фазы в трехфазной цепи не нужно. Например, если к трехфазной сети подключен такой же двигатель, то он способен вращается в обе стороны. Чтобы изменить направление, нужно поменять местами любые 2 фазы. Также можно равномерно распределить нагрузку на все фазы, чтобы избежать перекоса.

Если условно обозначить разные линии в любой 3-фазной сети, как буквы А, В, С, то можно выделить такие варианты их чередования:

  • Обратные (CBA, BAC, ACB).
  • Прямые (ABC, BCA, CAB);

В случае подключения оборудования к 3-фазной линии с силовым проводом, порядок следования фаз можно проверить, не используя специальные приборы. В таком случае смотрят на разноцветную либо цифирную маркировку изоляции проводов.

Также нужно отметить, что на практике маркировка изоляцией может оказаться не самым точным критерием. Ведь, не все производители гарантируют совпадение цвета изоляции в начале и в конце кабеля.

Если вы не знаете, как определить фазы в трехфазной цепи, то стоит обратиться к профессиональному электрику

Добиться самых правильных показаний может метод прозвонки кабеля. Например, использование 2 теле-трубок. 1 из них в таком случае является активной, то есть обладает батареей питания, другая же пассивная и не имеет тока.

Также существует парные гарнитуры, которая снабжена наушниками, а также зажимами, или специально предназначенные для использования фазирования. Еще можно использовать мегомметр.

При этом, нужно обязательно строго соблюдать меры безопасности.

Принципы проверки фазировки

Такая операция выполняется перед подключением в параллельную работу 2 и более линий, которые работают независимым способом.

Еще от обновленного генератора, после капремонта, во время которого могла поменяться схема присоединения статора к сети.

Проверить одноименность или расцветку фазных проводников обязательно нужно. Ведь в последствии их нужно будет соединить.

Такая операция:

  1. Направлена на предотвращение ошибки во время присоединения линий установки параллельно.
  2. Она позволяет правильно проверить все контакты.
  3. Проверяется правильность присоединения токоведущих кабелей, включаемых к аппарату.

Проверяется совпадение по линии одинаковых токов, а именно отсутствие углового сдвига. Только при получении положительных результатов во время фазировки, генераторы либо трансформаторы работают параллельно и подключаются на одновременную работу.

Особенности прямой последовательности фаз

Это также называется способом асимметричных компонентов. Подробнее, элемент определения асимметричных электронных компонентов. Он основан на разложение несимметричной системы на 3 симметричные: прямая, обратная, нулевая.

Где применяется прямая последовательность фаз:

  1. Метод используется для определения асимметричных порядков действия электроэнергетических компонентов.
  2. Данный способ применяют некоторые элементы РЗиА. Например, на этом построен принцип действия трансформатора напряжения при последовательности в ноль. Основан принцип на суммировании значений напряжения во всех фазах.
  3. Для 3-фазных транспортных ЛЭП, в итоге получается матрица точных собственных направлений.

Этот способ определения удачно применяется, чтобы рассчитать несимметричные режимы 3-фазной линии, либо возникновения замыкания цепи. Фазоуказатель помогает определить прямую последовательность фаз, что нужно для работы некоторых устройств. При необходимости, можно легко изменить последовательность фаз.

Источник: https://1000eletric.com/pribor-dlya-opredeleniya-cheredovaniya-faz-svoimi-rukami/